Algebraic Independence in Positive Characteristic -- A p-Adic Calculus

نویسندگان

  • Johannes Mittmann
  • Nitin Saxena
  • Peter Scheiblechner
چکیده

A set of multivariate polynomials, over a field of zero or large characteristic, can be tested for algebraic independence by the well-known Jacobian criterion. For fields of other characteristic p > 0, no analogous characterization is known. In this paper we give the first such criterion. Essentially, it boils down to a non-degeneracy condition on a lift of the Jacobian polynomial over (an unramified extension of) the ring of p-adic integers. Our proof builds on the functorial de Rham-Witt complex, which was invented by Illusie (1979) for crystalline cohomology computations, and we deduce a natural explicit generalization of the Jacobian. This new avatar we call the Witt-Jacobian. In essence, we show how to faithfully differentiate polynomials over Fp (i.e., somehow avoid ∂xp/∂x = 0) and thus capture algebraic independence. We give two applications of this criterion in algebraic complexity theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

Power Series and p-adic Algebraic Closures

In a previous paper [3], the author gave an explicit description of the algebraic closure of the power series field over a field of characteristic p > 0, in terms of certain “generalized power series”. The purpose of the present paper is to extend this work to mixed characteristic. Specifically, we give an analogous description of the algebraic closure of the Witt ring W (K) of an algebraically...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Frobenius Difference Equations and Algebraic Independence of Zeta Values in Positive Equal Characteristic

In analogy with the Riemann zeta function at positive integers, for each finite field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. Our theorem asserts that among the zeta values in ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those relations within each individual family {ζr(1), ζr(2), ζr(3), . . . }. These are the algebr...

متن کامل

Swan conductors for p-adic differential modules, II: Global variation

Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and l-adic representations of the étale fundamental group of a variety. We then demonstrate some vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012